Markscheme

May 2018

Chemistry

Higher level

Paper 2

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Question			Answers			Notes	Total
1.	a	i	molar mass of urea «=4×1.01+2×14.01+12.01+16.00»=60.07«g mol${ }^{-1} » \checkmark$ «\% nitrogen $=\frac{2 \times 14.01}{60.07} \times 100=» 46.65$ «\%»			Award [2] for correct final answer. Award [1 max] for final answer not to two decimal places.	2
1.	a	ii	«cost» increases AND lower N \% «means higher cost of transportation per unit of nitrogen» OR «cost» increases AND inefficient/too much/about half mass not nitrogen \checkmark			Accept other reasonable explanations. Do not accept answers referring to safety/explosions.	1
1.	b		Electron geometry Molecular geometry Nitrogen tetrahedral \checkmark trigonal pyramidal \checkmark Carbon trigonal planar \checkmark trigonal planar			Note: Urea's structure is more complex than that predicted from VSEPR theory.	3
1.	c		$\begin{aligned} & n(\mathrm{KNCO}) «=0.0500 \mathrm{dm}^{3} \times 0.100 \mathrm{~mol} \mathrm{dm}^{-3} »=5.00 \times 10^{-3} \text { «mol» } \\ & \text { «mass of urea }=5.00 \times 10^{-3} \mathrm{~mol} \times 60.07 \mathrm{~g} \mathrm{~mol}^{-1} »=0.300 « \mathrm{~g} » \end{aligned}$			Award [2] for correct final answer.	2
1.	d	i	$K_{\mathrm{c}}=\frac{\left[\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{CO}\right] \times\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{NH}_{3}\right]^{2} \times\left[\mathrm{CO}_{2}\right]}$				1
1.	d	ii	« K_{c} » decreases AND reaction is exothermic OR « K_{c} » decreases $\boldsymbol{A N D} \Delta H$ is negative OR «K K_{c} » decreases AND reverse/endothermic reaction is favoured \checkmark				1

(Question 1d continued)

Question			Answers	Notes	Total
1.	d	iii	$\begin{aligned} & \operatorname{In} K «=\frac{-\Delta G^{\ominus}}{R T}=\frac{-50 \times 10^{3} \mathrm{~J}}{8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 298 \mathrm{~K}} »=-20 \checkmark \\ & « K_{\mathrm{c}}=» 2 \times 10^{-9} \end{aligned}$ OR 1.69×10^{-9} OR $10^{-9} \checkmark$	Accept range of 20-20.2 for M1. Award [2] for correct final answer.	2
1.	e	i	Any one of: urea has greater molar mass \checkmark urea has greater electron density/greater London/dispersion \checkmark urea has more hydrogen bonding \checkmark urea is more polar/has greater dipole moment \checkmark	Accept "urea has larger size/greater van der Waals forces". Do not accept "urea has greater intermolecular forces/IMF".	1
1.	e	ii		Award [1] for each correct interaction. If lone pairs are shown on N or O , then the lone pair on N or one of the lone pairs on O MUST be involved in the H-bond. Penalize solid line to represent H-bonding only once.	2

Question		Answers	Notes	Total
1.	f	$2\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{CO}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{~N}_{2}(\mathrm{~g})$ correct coefficients on LHS \checkmark correct coefficients on RHS \checkmark	$\begin{aligned} & \text { Accept }\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{CO}(\mathrm{~s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \\ & 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) . \end{aligned}$ Accept any correct ratio.	2
1.	g	$\text { «V }=\frac{0.600 \mathrm{~g}}{60.07 \mathrm{~g} \mathrm{~mol}^{-1}} \times 22700 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}=» 227 \text { «cm }^{3} » \checkmark$		1
1.	h	lone/non-bonding electron pairs «on nitrogen/oxygen/ligand» given to/shared with metal ion \checkmark co-ordinate/dative/covalent bonds \checkmark		2
1.	i	Ione pairs on nitrogen atoms can be donated to/shared with $\mathrm{C}-\mathrm{N}$ bond OR $\mathrm{C}-\mathrm{N}$ bond partial double bond character OR delocalization «of electrons occurs across molecule» OR slight positive charge on C due to $\mathrm{C}=\mathrm{O}$ polarity reduces $\mathrm{C}-\mathrm{N}$ bond length \checkmark		1
1.	j	60: $\mathrm{CON}_{2} \mathrm{H}_{4}+\checkmark$ 44: $\mathrm{CONH}_{2}{ }^{+} \checkmark$	Accept "molecular ion".	2

Question			Answers	Notes	Total
1.	k		$\begin{aligned} & 3450 \mathrm{~cm}^{-1}: \mathrm{N}-\mathrm{H} \checkmark \\ & 1700 \mathrm{~cm}^{-1}: \mathrm{C}=\mathrm{O}, \end{aligned}$	Do not accept "O-H" for $3450 \mathrm{~cm}^{-1}$.	2
1.	I	i	$1 \checkmark$		1
1.	I	ii	singlet \checkmark	Accept "no splitting".	1
1.	I	iii	acts as internal standard OR acts as reference point \checkmark one strong signal OR 12 H atoms in same environment OR signal is well away from other absorptions \checkmark	Accept "inert" or "readily removed" or "non-toxic" for M1.	2

Question			Answers	Notes	Total
2.	a		electrostatic attraction AND oppositely charged ions \checkmark		1
2.	b		multiply relative intensity by «m/z» value of isotope OR find the frequency of each isotope \checkmark sum of the values of products/multiplication «from each isotope» OR find/calculate the weighted average \checkmark	Award [1 max] for stating " m / z values of isotopes AND relative abundance/intensity" but not stating these need to be multiplied.	2
2.	C		«promoted» electrons fall back to lower energy level \checkmark energy difference between levels is different $\sqrt{ }$	Accept "Na and Ca have different nuclear charge" for M2.	2
2.	d	i	Any two of: stronger metallic bonding \checkmark smaller ionic/atomic radius \checkmark two electrons per atom are delocalized OR greater ionic charge \checkmark greater atomic mass \checkmark	Do not accept just "heavier" or "more massive" without reference to atomic mass.	2
2.	d	ii	delocalized/mobile electrons «free to move» \checkmark		1

Question		Answers	Notes	Total
2.	e	 general increase \checkmark only one discontinuity between "IE2" and "IE3" \checkmark		2
2.	f	$\mathrm{pH}>7 \checkmark$	Accept any specific pH value or range of values above 7 and below 14.	1

Question			Answers	Notes	Total
2.	g	i	sigma (σ) : overlap «of atomic orbitals» along the axial/internuclear axis OR head-on/end-to-end overlap «of atomic orbitals» \checkmark pi (π) : overlap «of p-orbitals» above and below the internuclear axis OR sideways overlap «of p-orbitals» \downarrow	Award marks for suitable diagrams.	2
2.	g	ii	sigma (σ): 3 AND $\text { pi }(\pi): 2 \checkmark$		1

Question			Answers	Notes	Total
3.	a	i	nickel/Ni «catalyst» high pressure OR heat \checkmark	Accept these other catalysts: Pt, Pd, Ir, Rh, Co, Ti. Accept "high temperature" or a stated temperature such as " $150^{\circ} \mathrm{C}$ ".	2
3.	a	ii		Ignore square brackets and " n ". Connecting line at end of carbons must be shown.	1
3.	b		ethyne: $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{CHClCHCl} \checkmark$ benzene: $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{HCl} \checkmark$	Accept " $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$ ".	2
3.	c	i	$\begin{aligned} & \Delta H^{\ominus}=\text { bonds broken }- \text { bonds formed } \checkmark \\ & « \Delta H^{\ominus}=3(\mathrm{C} \equiv \mathrm{C})-6(\mathrm{C}=\mathrm{-}=\mathrm{C})_{\text {benzene }} / 3 \times 839-6 \times 507 / 2517-3042=» \\ & -525 « \mathrm{~kJ} » \checkmark \end{aligned}$	Award [2] for correct final answer. Award [1 max] for "+525 «kJ»". Award [1 max] for: $\begin{aligned} & « \Delta H^{\ominus}=3(C \equiv C)-3(C-C)-3(C=C) / \\ & 3 \times 839-3 \times 346-3 \times 614 / 2517- \\ & 2880=»-363 « k J » . \end{aligned}$	2

(Question 3c continued)

Question			Answers	Notes	Total
3.	C	ii	$\begin{aligned} & \Delta H^{\ominus}=\Sigma \Delta H_{\mathrm{f}} \text { (products) }-\Sigma \Delta H_{\mathrm{f}}(\text { reactants }) \checkmark \\ & « \Delta H^{\ominus}=49 \mathrm{~kJ}-3 \times 228 \mathrm{~kJ}=»-635 « \mathrm{~kJ} » \end{aligned}$	Award [2] for correct final answer. Award [1 max] for "+635 «kJ»".	2
3.	C	iii	ΔH_{f} values are specific to the compound OR bond enthalpy values are averages «from many different compounds» \checkmark condensation from gas to liquid is exothermic \checkmark	Accept "benzene is in two different states «one liquid the other gas»" for M2.	2
3.	c	iv	$« \Delta S^{\ominus}=173-3 \times 201=»-430$ «J K ${ }^{-1} » \downarrow$		1
3.	C	v	$\begin{aligned} & \mathrm{T}=« 25+273=» 298 \text { «K» } \\ & \Delta G^{\ominus} «=-635 \mathrm{~kJ}-298 \mathrm{~K} \times\left(-0.430 \mathrm{~kJ} \mathrm{~K}^{-1}\right) »=-507 \mathrm{~kJ} \checkmark \\ & \Delta G^{\ominus}<0 \text { AND spontaneous } \checkmark \end{aligned}$	$\Delta G^{\ominus}<0$ may be inferred from the calculation.	3
3.	d		equal $\mathrm{C}-\mathrm{C}$ bond «lengths/strengths» OR regular hexagon OR «all» $\mathrm{C}-\mathrm{C}$ have bond order of 1.5 OR «all» $\mathrm{C}-\mathrm{C}$ intermediate between single and double bonds \checkmark	Accept "all $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angles are equal".	1

Question			Answers	Notes	Total
4.	a		Any two of: loss of mass «of reaction mixture/ CO_{2} » \checkmark «increase in» volume of gas produced \checkmark change of conductivity \checkmark change of $\mathrm{pH} \checkmark$ change in temperature \checkmark	Do not accept "disappearance of calcium carbonate". Do not accept "gas bubbles". Do not accept "colour change" or "indicator".	2
4.	b	i	reaction is fast at high concentration AND may be difficult to measure accurately OR so many bubbles of CO_{2} produced that inhibit contact of $\mathrm{HCl}(\mathrm{aq})$ with CaCO_{3} (s) OR insufficient change in conductivity/pH at high concentrations OR calcium carbonate has been used up/is limiting reagent/ there is not enough calcium carbonate «to react with the high concentration of HCl » OR HCl is in excess OR so many bubbles of CO_{2} produced that inhibit contact of $\mathrm{HCl}(\mathrm{aq})$ with $\mathrm{CaCO}_{3}(\mathrm{~s}) \checkmark$		1

(continued...)
(Question 4b continued)

Question			Answers	Notes	Total
4.	b	ii	 straight line going through the origin $\mathbf{A N D}$ as close to $\mathrm{A}, \mathrm{B}, \mathrm{C}$ as is reasonably possible $\sqrt{ }$		1

(Question 4b continued)

Question			Answers	Notes	Total
4.	b	iii	«directly» proportional \checkmark	Accept "first order" or "linear". Do not accept "rate increases as concentration increases" or "positive correlation".	1
4.	b	iv	rate $=k\left[\mathrm{H}^{+}\right] \checkmark$	Accept "rate $=k[H C l]$ ".	1
4	b	v	$\begin{aligned} & 0.02 \checkmark \\ & \mathrm{~s}^{-1} \checkmark \end{aligned}$		2
4.	C		20.5×10^{-3} «mol dm ${ }^{-3} \mathrm{~s}^{-1}$ »	Accept any answer in the range 19.5-21.5.	1

Question		Answers	Notes	Total
4.	d	ALTERNATIVE 1: carry out reaction at several temperatures \checkmark plot $\frac{1}{\mathrm{~T}}$ against log rate constant \checkmark $E_{a}=-$ gradient $\times R \checkmark$ ALTERNATIVE 2: carry out reaction at two temperatures \checkmark determine two rate constants OR determine the temperature coefficient of the rate \checkmark use the formula $\ln \frac{k_{1}}{k_{2}}=\frac{E_{\mathrm{a}}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \checkmark$	Accept "gradient $=\frac{-E_{a}}{\mathrm{R}}$ " for $M 3$. Award both M2 and M3 for the formula $\ln \frac{r a t e_{1}}{\text { rate }_{2}}=\frac{E_{\mathrm{a}}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$. Accept any variation of the formula, such as $\frac{\text { rate }_{1}}{\text { rate }_{2}}=e^{\frac{-E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)}$.	3

Question			Answers	Notes	Total
5.	a		slower rate with ethanoic acid OR smaller temperature rise with ethanoic acid \checkmark $\left[\mathrm{H}^{+}\right]$lower OR ethanoic acid is weak OR ethanoic acid is partially dissociated \checkmark	Accept experimental observations such as "slower bubbling" or "feels less warm".	2
5.	b		Any one of: corrosion of materials/metals/carbonate materials \checkmark destruction of plant/aquatic life \checkmark «indirect» effect on human health \checkmark	Accept "lowering pH of oceans/lakes/waterways".	1
5.	C		Brønsted-Lowry base: $\mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}^{+} \downarrow$ Lewis base: $\mathrm{NH}_{3}+\mathrm{BF}_{3} \rightarrow \mathrm{H}_{3} \mathrm{NBF}_{3} \checkmark$	Accept " AlCl_{3} as an example of Lewis acid". Accept other valid equations such as $\mathrm{Cu}^{2+}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$.	2
5.	d		$\begin{aligned} & {\left[\mathrm{H}^{+}\right] «=\sqrt{\mathrm{K}_{\mathrm{a}} \times\left[\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}\right]}=\sqrt{9.333 \times 10^{-6} \times 0.010} »=3.055 \times 10^{-4} « \mathrm{~mol} \mathrm{dm}^{-3} »} \\ & \mu \mathrm{pH}=» 3.51 \checkmark \end{aligned}$	Accept " $\mathrm{pH}=3.52$ ". Award [2] for correct final answer. Accept other calculation methods.	2

Question			Answers	Notes	Total
5.	e		$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ OR $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ AND addition of alkali causes equilibrium to move to right \checkmark $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOH}(\mathrm{aq})$ OR $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOH}(\mathrm{aq}) \boldsymbol{A N D}$ addition of acid causes equilibrium to move to right \checkmark	Accept "HA" for the acid. Award [1 max] for correct explanations of buffering with addition of acid AND base without equilibrium equations.	2

Question		Answers	Notes	Total
6.	a	salt bridge \checkmark movement of ions OR balance charge $\sqrt{ }$	Do not accept "to complete circuit" unless ion movement is mentioned for M2.	2
6.	b	Positive electrode (cathode): $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{~s}) \checkmark$ Negative electrode (anode): $\mathrm{Mg}(\mathrm{~s}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \checkmark$	Award [1 max] if correct equations given at wrong electrodes.	2
6.	C	in external wire from left to right \checkmark		1
6.	d	« $E=+0.80 \mathrm{~V}-(-2.37 \mathrm{~V})=+$) 3.17 «V»		1
6.	e	$\begin{aligned} & \text { «moles of silver }=\frac{0.10 \mathrm{~g}}{107.87 \mathrm{~g} \mathrm{~mol}^{-1}} » \\ & \text { moles of magnesium }=\frac{0.5 \times 0.10 \text { «g» }}{107.87 \text { «g mol}{ }^{-1} »} \\ & \text { «loss in mass of magnesium }=\frac{24.31 \mathrm{~g} \mathrm{~mol}^{\times} \times 0.5 \times 0.10 \mathrm{~g}}{107.87 \mathrm{~g} \mathrm{~mol}^{-1}}=» 0.011 \text { «g» } \end{aligned}$	Award [2] for correct final answer.	2

Question			Answers	Notes	Total
7.	a		Any two similarities: heterolytic bond breaking OR chloride ions leave \checkmark nucleophilic/ OH^{-}substitution \checkmark both first order with regard to [halogenoalkane] \checkmark One difference: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ is second order/bimolecular/S 2 AND $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$ is first order/unimolecular/ $\mathrm{S}_{\mathrm{N}} 1$ OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ rate depends on $\left[\mathrm{OH}^{-}\right]$AND $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$ does not OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ is one step $\boldsymbol{A N D}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$ is two steps OR $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$ involves an intermediate $\boldsymbol{A N D} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ does not OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ has inversion of configuration AND $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$ has c. $50: 50$ retention and inversion \checkmark	Do not accept "produces alcohol" or "produces NaCl". Accept "substitution in 1-chlorobutane and «some» elimination in 2-chloro-2methylpropane".	3
7.	b		$\mathrm{C}-\mathrm{Br}$ bond weaker than $\mathrm{C}-\mathrm{Cl}$ bond \checkmark	Accept " Br^{-}is a better leaving group". Do not accept "bromine is more reactive". Do not accept " $\mathrm{C}-\mathrm{Br}$ bond is longer than $\mathrm{C}-\mathrm{Cl}$ " alone.	1

Question			Answers	Notes	Total
7.	c	i	butan-1-ol/ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \checkmark$	Do not accept "butanol" for "butan-1-ol". Accept "1-butanol". Do not penalize for name if correct formula is drawn.	1
7.	C	ii	«reduction with» lithium aluminium hydride/LiAlH ${ }_{4} \checkmark$	Do not accept "sodium borohydride/ NaBH_{4} ".	1
7.	C	iii	ester \checkmark		1

