

Markscheme

May 2018

Chemistry

Higher level

Paper 2

20 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Q	uesti	on			Answers			Notes	Total
1.	a	i			a «= 4 × 1.01 + 2 × 14.01 + 12.01 $\frac{14.01}{0.07}$ × 100 =» 46.65 «%» ✓	+ 16.00» = 60.07 «g mol ⁻¹ »	1	Award [2] for correct final answer. Award [1 max] for final answer not to two decimal places.	2
1.	a	ii	nitrog OR	gen»	AND lower N % «means higher co AND inefficient/too much/about ha		of	Accept other reasonable explanations. Do not accept answers referring to safety/explosions.	1
1.	b		Γ		Electron geometry	Molecular geometry		Note: Urea's structure is more complex	
				Nitrogen	tetrahedral √	trigonal pyramidal 🗸		than that predicted from VSEPR theory.	3
				Carbon	trigonal planar ✓	trigonal planar			
1.	с			,	0 dm ³ × 0.100 mol dm ⁻³ » = 5.00 × 10^{-3} mol × 60.07 g mol ⁻¹ » =			Award [2] for correct final answer.	2
1.	d	i	<i>K</i> _c =	$\frac{\left[\left(H_{2}N\right)_{2}CO\right]\times}{\left[NH_{3}\right]^{2}\times\left[C\right]}$	$\begin{bmatrix} H_2 O \end{bmatrix} \checkmark$				1
1.	d	ii	-	decreases Al	ND reaction is exothermic				
			OR «K _a »	decreases A	VD ∆H is negative				1
			OR						1
			«K _c »	decreases Al	ND reverse/endothermic reaction	is favoured ✓			

- 3 -

C	luesti	ion	Answers	Notes	Total
1.	d	iii	$\ln K \ll = \frac{-\Delta G^{\ominus}}{RT} = \frac{-50 \times 10^3 \text{ J}}{8.31 \text{ J} \text{ K}^{-1} \text{ mol}^{-1} \times 298 \text{ K}} \approx -20 \checkmark$	Accept range of 20-20.2 for M1. Award [2] for correct final answer.	
			« $K_c =$ » 2 × 10 ⁻⁹ OR 1.69 × 10 ⁻⁹ OR 10 ⁻⁹ ✓		2
1.	е	i	Any one of: urea has greater molar mass ✓ urea has greater electron density/greater London/dispersion ✓ urea has more hydrogen bonding ✓ urea is more polar/has greater dipole moment ✓	Accept "urea has larger size/greater van der Waals forces". Do not accept "urea has greater intermolecular forces/IMF".	1
1.	e	ii		Award [1] for each correct interaction. If lone pairs are shown on N or O, then the lone pair on N or one of the lone pairs on O MUST be involved in the H-bond. Penalize solid line to represent H-bonding only once.	2

0	uestion	Answers	Notes	Total
1.	f	$\begin{array}{l} 2(H_2N)_2CO\left(s\right) + 3O_2\left(g\right) \rightarrow 4H_2O\left(l\right) + 2CO_2\left(g\right) + 2N_2\left(g\right) \\ \text{correct coefficients on LHS \checkmark} \\ \text{correct coefficients on RHS \checkmark} \end{array}$	Accept $(H_2N)_2CO(s) + \frac{3}{2}O_2(g) \rightarrow$ $2H_2O(l) + CO_2(g) + N_2(g).$ Accept any correct ratio.	2
1.	g	$\text{«V} = \frac{0.600 \text{ g}}{60.07 \text{ g mol}^{-1}} \times 22700 \text{ cm}^3 \text{ mol}^{-1} = \text{» } 227 \text{ «cm}^3 \text{» } \checkmark$		1
1.	h	lone/non-bonding electron pairs «on nitrogen/oxygen/ligand» given to/shared with metal ion ✓ co-ordinate/dative/covalent bonds ✓		2
1.	i	Ione pairs on nitrogen atoms can be donated to/shared with C–N bond OR C-N bond partial double bond character OR delocalization «of electrons occurs across molecule» OR slight positive charge on C due to C=O polarity reduces C–N bond length √		1
1.	j	60: CON ₂ H ₄ ⁺	Accept "molecular ion".	2

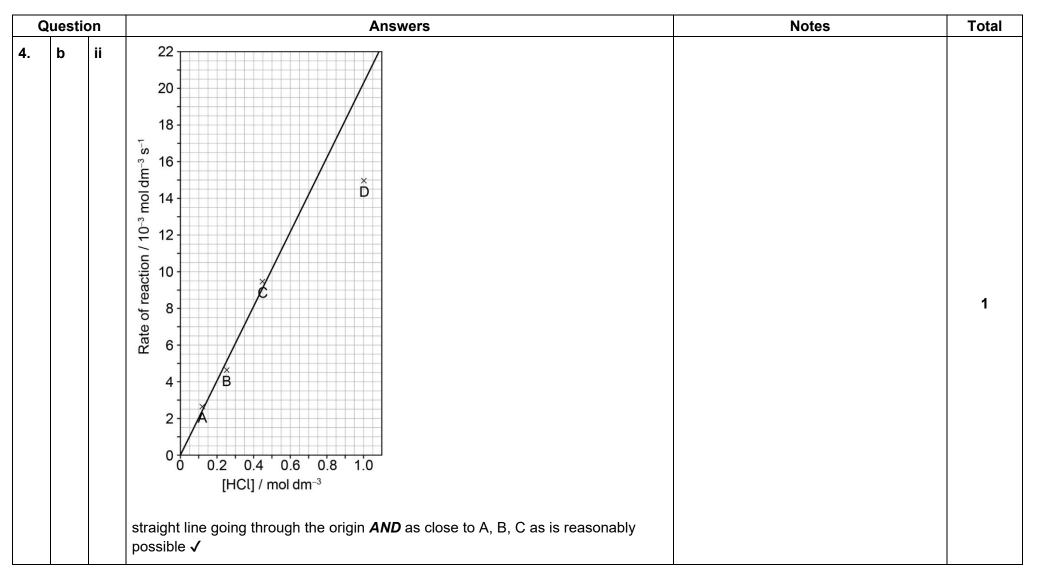
C	Question		Answers	Notes	Total
1.	k		3450 cm ⁻¹ : N−H ✓ 1700 cm ⁻¹ : C=O ✓	Do not accept "O–H" for 3450 cm ^{–1} .	2
1.	I	i	1√		1
1.	I	ii	singlet ✓	Accept "no splitting".	1
1.	I	iii	acts as internal standard <i>OR</i> acts as reference point ✓ one strong signal <i>OR</i> 12 H atoms in same environment <i>OR</i>	Accept "inert" or "readily removed" or "non-toxic" for M1.	2
			signal is well away from other absorptions √		

-6-

C	uestic	on	Answers	Notes	Total
2.	а		electrostatic attraction AND oppositely charged ions \checkmark		1
2.	b		multiply relative intensity by « <i>m</i> / <i>z</i> » value of isotope <i>OR</i> find the frequency of each isotope ✓ sum of the values of products/multiplication «from each isotope» <i>OR</i> find/calculate the weighted average ✓	Award [1 max] for stating "m/z values of isotopes AND relative abundance/intensity" but not stating these need to be multiplied.	2
2.	с		«promoted» electrons fall back to lower energy level \checkmark energy difference between levels is different \checkmark	Accept "Na and Ca have different nuclear charge" for M2.	2
2.	d	i	Any two of: stronger metallic bonding ✓ smaller ionic/atomic radius ✓ two electrons per atom are delocalized OR greater ionic charge ✓ greater atomic mass ✓	Do not accept just "heavier" or "more massive" without reference to atomic mass.	2
2.	d	ii	delocalized/mobile electrons «free to move» \checkmark		1

G	uestic	on	Answers	Notes	Total
2.	e		$(i) \\ (i) $		2
2.	f		pH > 7 ✓	Accept any specific pH value or range of values above 7 and below 14.	1

C	Questi	on	Answers	Notes	Total
2.	g	i	sigma (σ): overlap «of atomic orbitals» along the axial/internuclear axis OR head-on/end-to-end overlap «of atomic orbitals» \checkmark pi (π): overlap «of p-orbitals» above and below the internuclear axis OR sideways overlap «of p-orbitals» \checkmark	Award marks for suitable diagrams.	2
2.	g	ii	sigma (σ): 3 AND pi (π): 2 √		1


Question		on	Answers	Notes	Total
3.	а	i	nickel/Ni «catalyst» ✓	Accept these other catalysts: Pt, Pd, Ir, Rh, Co, Ti.	
			high pressure <i>OR</i> heat √	Accept "high temperature" or a stated temperature such as "150 °C".	2
3.	а	ii	$ \begin{bmatrix} H & H & H & H & H & H \\ H & H & H & H &$	Ignore square brackets and "n". Connecting line at end of carbons must be shown.	1
3.	b		<i>ethyne:</i> $C_2H_2 + Cl_2 \rightarrow CHClCHCl \checkmark$ <i>benzene:</i> $C_6H_6 + Cl_2 \rightarrow C_6H_5Cl + HCl \checkmark$	Accept "C ₂ H ₂ Cl ₂ ".	2
3.	C	i	ΔH^{\ominus} = bonds broken – bonds formed \checkmark « ΔH^{\ominus} = 3(C=C) – 6(C=C) _{benzene} / 3 × 839 – 6 × 507 / 2517 – 3042 =» –525 «kJ» \checkmark	Award [2] for correct final answer. Award [1 max] for "+525 «kJ»". Award [1 max] for: « $\Delta H^{\ominus} = 3(C=C) - 3(C-C) - 3(C=C) / 3 \times 839 - 3 \times 346 - 3 \times 614 / 2517 - 2880 = -363 «kJ».$	2

Question		on	Answers	Notes	Total
3.	с	ii	$\Delta H^{\ominus} = \Sigma \Delta H_{f} \text{ (products)} - \Sigma \Delta H_{f} \text{ (reactants)} \checkmark$ $\ll \Delta H^{\ominus} = 49 \text{ kJ} - 3 \times 228 \text{ kJ} = -635 $	Award [2] for correct final answer. Award [1 max] for "+635 «kJ»".	2
3.	С	111	$\Delta H_{\rm f}$ values are specific to the compound OR bond enthalpy values are averages «from many different compounds» \checkmark condensation from gas to liquid is exothermic \checkmark	Accept "benzene is in two different	2
3.	c	iv	$(\Delta S^{\Theta} = 173 - 3 \times 201 = » -430 $ «J K ⁻¹ » √	states «one liquid the other gas»" for M2.	1
3.	C	v	T = «25 + 273 =» 298 «K» ✓ ΔG^{Θ} « = -635 kJ - 298 K × (-0.430 kJ K ⁻¹)» = -507 kJ ✓ $\Delta G^{\Theta} < 0$ <i>AND</i> spontaneous ✓	ΔG^{Θ} < 0 may be inferred from the calculation.	3
3.	d		equal C–C bond «lengths/strengths» <i>OR</i> regular hexagon <i>OR</i> «all» C–C have bond order of 1.5 <i>OR</i> «all» C–C intermediate between single and double bonds √	Accept "all C–C–C bond angles are equal".	1

M18/4/CHEMI/HP2/ENG/TZ1/XX/M

C	Question		Answers	Notes	Total
4.	а		Any two of: loss of mass «of reaction mixture/CO₂» ✓ «increase in» volume of gas produced ✓ change of conductivity ✓ change of pH ✓ change in temperature ✓	Do not accept "disappearance of calcium carbonate". Do not accept "gas bubbles". Do not accept "colour change" or "indicator".	2
4.	b	i	 reaction is fast at high concentration <i>AND</i> may be difficult to measure accurately <i>OR</i> so many bubbles of CO₂ produced that inhibit contact of HCl (aq) with CaCO₃ (s) <i>OR</i> insufficient change in conductivity/pH at high concentrations <i>OR</i> calcium carbonate has been used up/is limiting reagent/ there is not enough calcium carbonate «to react with the high concentration of HCl» <i>OR</i> HCl is in excess <i>OR</i> so many bubbles of CO₂ produced that inhibit contact of HCl (aq) with CaCO₃ (s) ✓ 		1

(Question 4b continued)

(Question 4b continued)

Question		on	Answers	Notes	Total
4.	b	iii	«directly» proportional ✓	Accept "first order" or "linear". Do not accept "rate increases as concentration increases" or "positive correlation".	1
4.	b	iv	rate = $k [H^+] \checkmark$	Accept "rate = k [HCl]".	1
4	b	v	0.02 ✓ s ⁻¹ ✓		2
4.	с		20.5×10^{-3} «mol dm ⁻³ s ⁻¹ »	Accept any answer in the range 19.5–21.5.	1

4.

Question		n	Answers		Total
-	d	ALTERNATIVE 1:			
		carry out reaction at several terr	nperatures √		
		plot $\frac{1}{T}$ against log rate constant	t √		
		E_a = – gradient × R \checkmark		Accept "gradient = $\frac{-E_a}{R}$ " for M3.	
		ALTERNATIVE 2:			
		carry out reaction at two temper	atures ✓	Award both M2 and M3 for the formula $E_a \begin{pmatrix} 1 & 1 \end{pmatrix}$	3
		determine two rate constants		$\ln \frac{rate_1}{rate_2} = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right).$	
		OR		Accept on veriation of the formula	
		determine the temperature coef	ficient of the rate \checkmark	Accept any variation of the formula,	
				such as $\frac{rate_1}{rate_2} = e^{-\frac{E_a}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)}$.	
		use the formula $\ln \frac{k_1}{k_2} = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_2} \right)$	$\left(\frac{1}{T_1}\right) \checkmark$		

Question		on	Answers	Notes	Total
5.	а		slower rate with ethanoic acid OR smaller temperature rise with ethanoic acid ✓ [H ⁺] lower OR ethanoic acid is weak OR	Accept experimental observations such as "slower bubbling" or "feels less warm".	2
5.	b		ethanoic acid is partially dissociated ✓ <i>Any one of:</i> corrosion of materials/metals/carbonate materials ✓ destruction of plant/aquatic life ✓ «indirect» effect on human health ✓	Accept "lowering pH of oceans/lakes/waterways".	1
5.	с		Brønsted–Lowry base: $NH_3 + H^+ \rightarrow NH_4^+ \checkmark$ Lewis base: $NH_3 + BF_3 \rightarrow H_3NBF_3 \checkmark$	Accept "AlCl ₃ as an example of Lewis acid". Accept other valid equations such as $Cu^{2^+} + 4NH_3 \rightarrow [Cu(NH_3)_4]^{2^+}$.	2
5.	d		$[H^+] \ll \sqrt{K_a \times [C_5 H_{10} O_2]} = \sqrt{9.333 \times 10^{-6} \times 0.010} \approx 3.055 \times 10^{-4} \pmod{dm^{-3}} \checkmark$ $\ll pH \Rightarrow 3.51 \checkmark$	Accept "pH = 3.52". Award [2] for correct final answer. Accept other calculation methods.	2

Question		Answers	Notes	Total	
5.	e	$\begin{array}{l} (CH_3)_3CCOOH\ (aq) + OH^-(aq) \rightarrow (CH_3)_3CCOO^-\ (aq) + H_2O\ (l) \\ \hline \ OR \\ (CH_3)_3CCOOH\ (aq) + OH^-\ (aq) \rightleftharpoons (CH_3)_3CCOO^-\ (aq) + H_2O\ (l)\ \ AND\ \ addition\ of \\ alkali\ causes\ equilibrium\ to\ move\ to\ right\ \checkmark \end{array}$	Accept "HA" for the acid. Award [1 max] for correct explanations of buffering with addition of acid AND base without equilibrium equations.		
		$\begin{array}{l} (CH_3)_3CCOO^- (aq) + H^+ (aq) \rightarrow (CH_3)_3CCOOH (aq) \\ \hline \textit{OR} \\ (CH_3)_3CCOO^- (aq) + H^+ (aq) \rightleftharpoons (CH_3)_3CCOOH (aq) \textit{AND} \text{ addition of acid causes} \\ equilibrium to move to right \checkmark \end{array}$		2	

0	Question	Answers	Notes	Total
6.	а	salt bridge ✓		
		movement of ions <i>OR</i> balance charge √	Do not accept "to complete circuit" unless ion movement is mentioned for M2.	2
6.	b	Positive electrode (cathode): $Ag^+(aq) + e^- \rightarrow Ag(s) \checkmark$ Negative electrode (anode): $Mg(s) \rightarrow Mg^{2+}(aq) + 2e^- \checkmark$	Award [1 max] if correct equations given at wrong electrodes.	2
6.	с	in external wire from left to right \checkmark		1
6.	d	$ext{ $(E = +0.80 \ V - (-2.37 \ V) = +$)} 3.17 \ ext{ (V)		1
6.	e	where $= \frac{0.10 \text{ g}}{107.87 \text{ g mol}^{-1}}$ $0.5 \times 0.10 \text{ eg}$	Award [2] for correct final answer.	
		moles of magnesium = $\frac{0.5 \times 0.10 \text{ «g}}{107.87 \text{ «g mol}^{-1}} \checkmark$		2

«loss in mass of magnesium = $\frac{24.31 \text{ g mol} \times 0.5 \times 0.10 \text{ g}}{107.87 \text{ g mol}^{-1}}$ = » 0.011 «g» ✓

(Question		Answers	Notes	Total
7.	a		Any two similarities: heterolytic bond breaking OR chloride ions leave \checkmark nucleophilic/OH ⁻ substitution \checkmark both first order with regard to [halogenoalkane] \checkmark $One \ difference:$ $CH_3CH_2CH_2CH_2Cl is second order/bimolecular/S_N2 \ AND \ (CH_3)_3CCl is first order/unimolecular/S_N1 ORCH_3CH_2CH_2CH_2Cl rate \ depends \ on \ [OH-] \ AND \ (CH_3)_3CCl \ does \ notORCH_3CH_2CH_2CH_2Cl is one \ step \ AND \ (CH_3)_3CCl \ is two \ stepsOR(CH_3)_3CCl \ involves \ an \ intermediate \ AND \ CH_3CH_2CH_2CH_2Cl \ does \ notOR(CH_3)_3CCl \ involves \ an \ intermediate \ AND \ CH_3CH_2CH_2CH_2Cl \ does \ notOR(CH_3)_3CCl \ involves \ an \ intermediate \ AND \ CH_3CH_2CH_2CH_2Cl \ does \ notOR(CH_3CH_2CH_2CH_2Cl \ has \ inversion \ of \ configuration \ AND \ (CH_3)_3CCl \ has \ c. \ 50 : 50retention and inversion \checkmark$	Do not accept "produces alcohol" or "produces NaCl". Accept "substitution in 1-chlorobutane and «some» elimination in 2-chloro-2- methylpropane".	3
7.	b		C–Br bond weaker than C–Cl bond ✓	Accept "Br ⁻ is a better leaving group". Do not accept "bromine is more reactive". Do not accept "C–Br bond is longer than C–Cl" alone.	1

M18/4/CHEMI/HP2/ENG/TZ1/XX/M

Question		on	Answers	Notes	Total
7.	c	i	butan-1-ol/CH₃CH₂CH₂CH₂OH ✓	Do not accept "butanol" for "butan-1-ol". Accept "1-butanol". Do not penalize for name if correct formula is drawn.	1
7.	с	ii	«reduction with» lithium aluminium hydride/LiAlH4 \checkmark	Do not accept "sodium borohydride/NaBH ₄ ".	1
7.	с	iii	ester ✓		1